holder

The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.


Study of Inorganic Particles, Fibers, and Asbestos Bodies by Variable Pressure Scanning Electron Microscopy with Annexed Energy Dispersive Spectroscopy and Micro-Raman Spectroscopy in Thin Sections of Lung and Pleural Plaque

Volume 64, Number 6 (June 2010) Page 571-577

Rinaudo, Caterina; Croce, Alessandro; Musa, Maya; Fornero, Elisa; Allegrina, Mario; Trivero, Paolo; Bellis, Donata; Sferch, Daniela; Toffalorio, Francesca; Veronesi, Giulia; Pelosi, Giuseppe


In a previous work it has been demonstrated that micro-Raman spectroscopy is a technique able to recognize crystalline phases on untreated samples. In that case, inorganic particles and uncoated fibers from bronchoalveolar lavage (BAL) of a patient affected by pneumoconiosis were identified and characterized. In this work the technique is applied to asbestos bodies, that is, to coated fibers, and on crystallizations and fibrous phases observed in the plural plaque from patients affected by mesothelioma. From the Raman analysis the abundant fibrous material observed in the pleural area is talc, whereas rounded grains in the pleural tissue show the Raman spectrum of apatite, a calcium phosphate mineral particular to bones. In the pulmonary tissue many asbestos bodies, consisting of the incorporated fibers coated by iron-rich proteins, were observed. Under the 632.8 nm laser beam of the spectrometer, photo-crystallization of hematite in the iron-rich material forming the asbestos bodies can be proposed by the changes in the Raman spectra acquired during subsequent acquisitions. Nevertheless, the identification of the mineral phase constituting the incorporated fiber was possible by analyzing the Raman spectra; the results were confirmed by variable pressure scanning electron microscopy with annexed energy dispersive spectroscopy (VP-SEM-EDS) analyses.