The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.

Quantitative Deuterium Analysis of Titanium Samples in Ultraviolet Laser-Induced Low-Pressure Helium Plasma

Volume 64, Number 4 (April 2010) Page 365-369

Abdulmadjid, Syahrun Nur; Lie, Zener Sukra; Niki, Hideaki; Pardede, Marincan; Hedwig, Rinda; Lie, Tjung Jie; Jobiliong, Eric; Kurniawan, Koo Hendrik; Fukumoto, Ken-Ichi; Kagawa, Kiichiro; Tjia, May On

An experimental study of ultraviolet (UV) laser-induced plasma spectroscopy (LIPS) on Ti samples with low-pressure surrounding He gas has been carried out to demonstrate its applicability to quantitative micro-analysis of deuterium impurities in titanium without the spectral interference from the ubiquitous surface water. This was achieved by adopting the optimal experimental condition ascertained in this study, which is specified by 5 mJ laser energy, 10 Torr helium pressure, and 1-50 μs measurement window, which resulted in consistent D emission enhancement and effective elimination of spectral interference from surface water. As a result, a linear calibration line exhibiting a zero intercept was obtained from Ti samples doped with various D impurity concentrations. An additional measurement also yielded a detection limit of about 40 ppm for D impurity, well below the acceptable threshold of damaging H concentration in Ti and its alloys. Each of these measurements was found to produce a crater size of only 25 μm in diameter, and they may therefore qualify as nondestructive measurements. The result of this study has therefore paved the way for conducting further experiments with hydrogen-doped Ti samples and the technical implementation of quantitative micro-analysis of detrimental hydrogen impurity in Ti metal and its alloys, which is the ultimate goal of this study.