ATTENTION: This site is down for maintenance in read-only mode.

The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.

A Reusable Surface-Enhanced Raman Scattering (SERS) Substrate Prepared by Atomic Layer Deposition of Alumina on a Multi-Layer Gold and Silver Film

Volume 65, Number 4 (April 2011) Page 417-422


A thermally stable, reusable surface-enhanced Raman scattering (SERS) substrate consisting of a gold/silver bi-layer film with a protective alumina coating is reported. The film is synthesized by thermally evaporating sequential layers of gold and silver followed by coating an ultra-thin alumina layer using atomic layer deposition. The use of gold as the foundational layer improves the thermal stability of the metal bi-layer film while providing the additional ability to tune the SERS response. Deposition of the thin alumina overlayer on the bi-layer film creates a SERS substrate capable of enduring multiple high-temperature exposures to 400 °C with minimal loss of enhancement capabilities. We demonstrate the multi-use capability of the substrate by measuring the SERS spectrum of rhodamine 6G followed by a thermal treatment at 400 °C to remove the analyte. A representative substrate was used to acquire SERS spectra of rhodamine 6G up to five repeat measurements, thus establishing the reusability of this relatively simple, inexpensive, and stable substrate.

Index Headings: Surface-enhanced Raman scattering; SERS; Atomic layer deposition; Reusable substrates.