holder

The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.


A Modified Golden Gate Attenuated Total Reflection (ATR) Cell for Monitoring Phase Transitions in Multicomponent Fluids at High Temperatures

Volume 65, Number 8 (Aug. 2011) Page 885-891

ALEXANDER A. NOVITSKIY, JIE KE, GURBUZ COMAK, MARTYN POLIAKOFF,* and MICHAEL W. GEORGE*


A new continuous flow method using attenuated total reflection infrared (ATR-IR) spectroscopy has been developed for monitoring phase transitions in multicomponent fluids at high pressures and temperatures. Our approach uses Fourier transform infrared (FT-IR) and a modified Golden Gate attenuated total reflection (ATR) cell and exploits the fact that the absorbance of a vapor is much lower than that of the corresponding liquid to monitor the phase transition between vapor and liquid. We demonstrate that this method can provide quantitative measurements on both the dew point and the bubble point. We have validated our approach using three single-component systems (EtOH, MeOH, and H2O) and a binary system of EtOH + H2O, monitoring phase transitions at temperature up to 300 °C and pressure up to 10 MPa.

Index Headings: Supercritical fluids; Phase behavior; Vapor–liquid transition; Attenuated total reflection; ATR; Fourier transform infrared spectroscopy; FT-IR spectroscopy.