holder

The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.


The Detection of Energetic Materials by Laser Photoacoustic Overtone Spectroscopy

Volume 66, Number 9 (Sept. 2012) Page 993-998

ROSARIO C. SAUSA* and JERRY B. CABALO


Laser-based sensors offer high sensitivity and species selectivity with real-time capabilities for monitoring the vapors of some energetic materials. However, the extremely low vapor pressure of many solid energetic materials under ambient conditions impedes these sensors. In this paper, we report on a novel technique based on laser photoacoustic overtone spectroscopy to detect and differentiate solid 1,3,5-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) in real time at ambient conditions. A tunable, near-infrared laser excites the target compound in the spectral region between 5800 to 6100 cm−1, and a microphone monitors the sound that they generate by non-radiative, collisional de-excitation processes. The photoacoustic signals result from first-overtone and combination absorptions of the energetic material's C–H vibrations, and the collisional processes enhance the signal at atmospheric pressure. The spectra reveal features that are unique to each measured material and these features can serve as a fingerprint for that material. We report the effects of laser energy and wavelength on signal intensity and estimate a detection limit for these compounds.



Index Headings: TNT; RDX; CL-20; Overtone spectroscopy; Near-infrared laser radiation; Explosives; Photoacoustic; Detection.