holder

The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.


Penetration of Light into Multiple Scattering Media: Model Calculations and Reflectance Experiments. Part II: The Radial Transfer

Volume 67, Number 4 (April 2013) Page 385-395

DIETER OELKRUG,* MANFRED BRUN, PETER HUBNER, KARSTEN REBNER, BARBARA BOLDRINI, and RUDOLF KESSLER*


In continuation of our contribution to “The Axial Transfer” (Appl. Spectr. 2012. 66(8): 934–943), this paper describes the distribution of localized incident radiation in multiple scattering layers of arbitrary thickness and analyzes the lateral intensity profiles of radiation leaving the sample from its illuminated and non-illuminated surfaces. The theoretical profiles are calculated with different approximations of the equation of transfer. We derive for both non-absorbing and absorbing layers simple analytical expressions and verify their accuracy and range of applicability by comparison with Monte Carlo simulations. Particular emphasis is given to the analysis of the radial absorption, an under-theorized and under-investigated feature that can help to identify weak or hidden absorbers. In addition, we contribute to the description of how the radial reflectance is affected by anisotropy or by error sources like multiple surface reflection for samples in glass cells or deflectance (sideway loss) of radiation in small samples. Finally, the theoretical results are compared with experimental data of radial reflectance for quasi non-absorbing and absorbing powder layers.



Index Headings: Light scattering; Light propagation; Monte Carlo methods; Reflectance spectroscopy; Radial reflectance; Radial absorbance.