The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.

Mapping of Leaf Water Content Using Near-Infrared Hyperspectral Imaging

Volume 67, Number 11 (Nov. 2013) Page 1302-1307


In this study, near-infrared hyperspectral imaging was applied to predict the water content of golden pothos (Epipremnum aureum) leaves, after which partial least squares regression (PLSR) analysis was performed to predict their averaged water content. The resulting predictive model was then applied to each single-pixel spectra in order to construct a water content image that could be used to evaluate the model's applicability to the single-pixel spectra through partial least squares score comparisons between the averaged spectra used for calibration and the single-pixel spectra. In the next phase, it was determined that a rebuilt PLSR predictive model based on the averaged spectra of an applicable pixel showed higher prediction accuracy than that of the original model. This study provides effective information about the limitations of prediction mapping and the optimization of pixel selections for better calibrations.

Index Headings: Hyperspectral imaging; Leaf water content; Optimization; Near-infrared (NIR)..