The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.

Continuous Laser-Excited Photothermal Spectrometry of CdSxSe1x Doped Glasses

Volume 61, Number 12 (Dec. 2007) Page 1373-1378

Dada, Oluwatosin O.; Jorgensen, Matthew R.; Bialkowski, Stephen E.

Photothermal lens measurements and finite element modeling are used to examine the physical changes taking place in optical filter glasses. Colored glass and neutral density filters are found to have a strong positive temperature-dependent refractive index change. The overall positive refractive index change is thought to be a consequence of complex counteracting factors: stress-induced birefringence, polarizability, structural network, and temperature-dependent carrier density changes in the CdSxSe1-x microcrystals that produce optical properties of these glasses. Finite element analysis (FEA) modeling is used to examine the temperature profiles and the goodness of the semi-infinite thermal diffusion solution normally used for thermal lens experiments. The results of FEA were used to optimize experimental parameters and calculate values of dn/dT for the glass by comparison with standard liquid samples.