holder

The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.


Temperature-Controlled Confocal Raman Microscopy to Detect Phase Transitions in Phospholipid Vesicles

Volume 61, Number 5 (May 2007) Page 465-469

Fox, Christopher B.; Myers, Grant A.; Harris, Joel M.


Optical-trapping confocal Raman microscopy enhances the capabilities of traditional Raman spectroscopy for the analysis of small particles by significantly reducing the sampling volume and minimizing background signal from the particle surroundings. Chemical composition and structural information can be obtained from optically trapped particles in aqueous solution without the need for labeling or extensive sample preparation. In this work, the challenges of measuring temperature dependent changes in suspended particles are addressed with the development of a small-volume, thermally conductive sample cell attached to a temperature-controlled microscope stage. To demonstrate its function, the gel to liquid-crystalline phase transitions of optically trapped lipid vesicles, composed of pure 1,2-ditridecanoyl-sn-glycero-3-phosphocholine (DTPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), were detected by changes in Raman spectra of the lipid bilayer. The Raman scattering data were found to correlate well with differential scanning calorimetry (DSC) results.