The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.

Time-Resolved Fourier Transform Infrared Spectroscopy of Chemical Reactions in Solution Using a Focal Plane Array Detector

Volume 60, Number 11 (Nov. 2006) Page 1273-1278

Kaun, N.; Vellekoop, M.J.; Lendl, B.

A Fourier transform infrared (FT-IR) microscope equipped with a single as well as a 64 × 64 element focal plane array MCT detector was used to measure chemical reaction taking place in a microstructured flow cell designed for time-resolved FT-IR spectroscopy. The flow cell allows transmission measurements through aqueous solutions and incorporates a microstructured mixing unit. This unit achieves lamination of the two input streams with a cross-section of 300 × 5 μm each, resulting in fast diffusion-controlled mixing of the two input streams. Microscopic measurement at defined positions along the outlet channel allows time-resolved information of the reaction taking place in the flow cell to be obtained. In this paper we show experimental results on the model reaction between formaldehyde and sulfite. Using the single-point MCT detector, high-quality FT-IR spectra could be obtained from a spot size of 80 × 200 μm whereas the FPA detector allowed recording light from an area of 260 × 260 μm focused on its 64 × 64 detector elements. Therefore, more closely spaced features could be discerned at the expense of a significantly lower signal-to-noise (S/N) ratio per spectrum. Multivariate curve resolution-alternating least squares was used to extract concentration profiles of the reacting species along the outlet channel axis.