The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.

Subsurface Raman Spectroscopy and Mapping Using a Globally Illuminated Non-Confocal Fiber-Optic Array Probe in the Presence of Raman Photon Migration

Volume 60, Number 2 (Feb. 2006) Page 109-114

Schulmerich, Matthew V.; Finney, William F.; Fredricks, Richard A.; Morris, Michael D.

We report the use of a fiber-optic probe with global illumination and an array of 50 collection fibers (PhAT probe, Kaiser Optical Systems, Inc.) to obtain Raman spectra and 50 spatial element maps of polymers through overlayers of other polymers that are highly scattering. Band target entropy minimization (BTEM) is used to recover the spectra of the subsurface components and generate maps of their distributions. This approach to subsurface mapping is tested with model systems consisting of two or three layers of polyethylene, polytetrafluoroethylene (Teflon), and polyoxymethylene (Delrin) arranged in different geometries. Raman spectra and maps were obtained through overlayer thicknesses of up to 13 mm. Subsurface spatial resolution is achieved because each fiber views an asymmetric distribution of Raman scattered light from surface and subsurface components that depends on the position of the fiber relative to the depth and position of a component and the extent of photon diffusion through the system.