The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.

The Spectral Energy Value System

Volume 29, Number 1 (Feb. 1975) Page 28-41

Anderson, Philip C.

This paper presents the spectral energy value system as a conceptualization of the nature of intramolecular energy structure. Using data from emission spectroscopy, the author has constructed structural representations of molecular "electromagnetic" energies. These spectral energy structures are corroborated by data from several independent branches of physical chemistry. Nonzero values for average emission line energies of diatomic molecules of elements in their standard states are proposed. Then it is shown that a total molecular energy calculated from thermodynamic data can be accounted for simply as an arithmetic summation of emission line energies of constituent atoms. Allocation of spectral energy and nuclidal mass to chemical bonds is shown to conform to a simple equivalence relation. Spectral energy structures for over 100 simple molecules have been constructed. The spectral energy structure of methane is discussed in detail. The concept of spectral energy density is introduced, and its general implications for physical chemistry are indicated. A particular example of the utility of this concept is a possible solution to the metabolic riddle of amino acid essentiality.