holder

The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.


Application of Fluorescence Correlation Spectroscopy for Velocity Imaging in Microfluidic Devices

Volume 58, Number 10 (Oct. 2004) Page 1180-1186

Kuricheti, Kalyan K.; Buschmann, Volker; Weston, Kenneth D.


In this paper we present and demonstrate a technique for mapping fluid flow rates in microfluidic systems with sub-micrometer resolution using confocal microscopy in conjunction with fluorescence correlation spectroscopy (FCS). Flow velocities ranging from ~50 μm/s to ~10 cm/s can be recorded using fluorescent polymer nanospheres as fluid motion tracers. Velocity profiles and images of the flow in poly(dimethylsiloxane)-glass microchannels are presented and analyzed. Using the method, velocity images along the horizontal (top view) and vertical planes within a microdevice can be obtained. This is, to our knowledge, the first report of FCS for producing velocity maps. The high-resolution velocity maps can be used to characterize and optimize microdevice performance and to validate simulation efforts.