The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.

Infrared Spectra of Crystalline Acetic Acid, a Hydrogen-Bonded Polymer

Volume 31, Number 2 (April 1977) Page 110-115

Krause, P.F.; Katon, J.E.; Rogers, J.M.; Phillips, D.B.

The polarized infrared spectra of crystalline acetic acid and two of its deuterated derivatives, CH3COOD and CD3COOD, have been recorded from 400 to 4000 cm−1 at cryogenic temperatures. The spectroscopic results have been interpreted on the basis of a factor group analysis based on two structural models: a crystallographic cell composed of four interacting monomer units some of whose vibrational modes are highly perturbed by hydrogen bonding and a unit cell composed of two noninteracting acetic acid chains. The results are discussed in terms of possible interactions between the hydrogen-bonded acetic acid polymeric chains.