holder

The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.


Spatial Mapping of Analyte Distribution within a Graphite Furnace Atomizer

Volume 42, Number 7 (Oct. 1988) Page 1307-1311

Huie, Carmen W.; Curran, Charles J.


A versatile diagnostic scheme based on the combination of the unique properties of a laser, such as collimation and monochromaticity, together with absorption spectroscopy and subsequent computer extraction of quantitative information from a video signal has been applied to acquire spatially and temporally resolved information in a graphite tube atomizer. Spatially resolved concentration profiles with a 256 × 240 array of intensities can be obtained in 1/60 second. This capability has been demonstrated in the study of sodium atom distribution within a graphite furnace. Spatially and temporally resolved absorbance profiles taken within the furnace show extreme nonuniformities throughout the lifetime of the sodium atom plume. Early in the absorbance signal, the distributions show absorbances which decrease in going from the bottom, where the sample was initially deposited, to the top of the furnace. A more uniform distribution of the free atoms can be seen after a majority of the analyte has been released from the surface of the graphite tube, i.e., after the absorbance peak.