The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.

Symmetrically Tapered 30-m-thick Quasi-Planar Germanium Waveguides as Chemical Sensors for Microanalysis

Volume 56, Number 12 (Dec. 2002) Page 1552-1561

Vongsvivut, Jitraporn; Shilov, Sergey V.; Ekgasit, Sanong; Braiman, Mark S.

Symmetrically tapered planar IR waveguides have been fabricated by starting with a ZnS coated concave piece of single-crystal Ge, embedding it in an epoxide resin as a supporting substrate, and then grinding and polishing a planar surface until the thickness at the taper minimum is <30 μm. Such tapering is expected to enhance a waveguide's sensitivity as an evanescent wave sensor by maximizing the amount of evanescent wave energy present at the thinnest part of the waveguide. As predicted by theory, the surface sensitivity, i.e., the absorbance signal per molecule in contact with the sensing region, increases with decreasing thickness of the tapered region even while the total energy throughput decreases. The signal-to-noise ratio obtained depends very strongly on the quality of the polished surfaces of the waveguides. The surface sensitivity is superior to that obtained with a commercial Ge attenuated total reflection (ATR) accessory for several types of sample, including thin fi lms (<10 ng) and small volumes (<1 μL) of volatile solvents. By using the waveguides, light-induced structural changes in the protein bacteriorhodopsin were observable using samples as small as ~50 pmol (~1 μg). In addition, the waveguide sensors can reveal the surface compositions on a single human hair, pointing to their promise as a tool for forensic fiber analysis.