The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.

New Hybrid Algorithm for Transferring Multivariate Quantitative Calibrations of Intra-vendor Near-Infrared Spectrometers

Volume 56, Number 7 (July 2002) Page 877-886

Wehlburg, Christine M.; Haaland, David M.; Melgaard, David K.

A new prediction-augmented classical least-squares/partial least-squares (PACLS/PLS) hybrid algorithm is ideally suited for use in transferring multivariate calibrations between spectrometers. Spectral variations such as instrument response differences can be explicitly incorporated into the algorithm through the use of subset sample spectra collected on both spectrometers. Two current calibration transfer methods, subset recalibration and piecewise direct standardization (PDS), also utilize subset sample spectra to facilitate transfer of calibration. The three methods were applied to the transfer of quantitative multivariate calibration models for near-infrared (NIR) data of organic samples containing chlorobenzene, heptane, and toluene between a primary and three secondary spectrometers that were all the same model, called intra-vendor transfer of calibration. The hybrid PACLS/PLS method outperformed subset recalibration and provided predictions equivalent to PDS with additive background correction on the two secondary spectrometers whose instrument drift appeared to be dominated by simple linear baseline variations. One of the secondary spectrometers had complex instrument drift that was captured by repeatedly measuring the spectrum of a single repeat sample. In calculating a transfer function to correct prediction spectra, PDS assumes no instrumental drift on the secondary spectrometer. Therefore, PDS was unable to directly accommodate both the subset samples and the use of a single repeat sample to transfer and maintain a calibration on that secondary instrument. In order to implement the transfer of calibration with PDS in the presence of complex instrument drift, recalibrated PLS models that included the repeat spectra from the secondary spectrometer were used to predict the spectra transformed by PDS. The importance of correcting for drift on the secondary spectrometer during calibration transfer was illustrated by the improvements in prediction for all three methods vs. using only the instrument response differences derived from the subset sample spectra. When the effects of instrument drift were complex on the secondary spectrometer, the PACLS/PLS hybrid algorithm outperformed both PDS and subset recalibration. Through the explicit incorporation of spectral variations, due to instrument response differences and drift on the secondary spectrometer, the PACLS/PLS algorithm was successful at intra-vendor transfer of calibrations between NIR spectrometers.