holder

ATTENTION: This site is down for maintenance in read-only mode.

The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.


New Hybrid Algorithm for Maintaining Multivariate Quantitative Calibrations of a Near-Infrared Spectrometer

Volume 56, Number 5 (May 2002) Page 605-614

Wehlburg, Christine M.; Haaland, David M.; Melgaard, David K.; Martin, Laura E.


Our newly developed prediction-augmented classical least-squares/partial least-squares (PACLS/PLS) hybrid algorithm can correct for the presence of unmodeled sources of spectral variation such as instrument drift by explicitly incorporating known or empirically derived information about the unmodeled spectral variation. We have tested the ability of the new hybrid algorithm to maintain a multivariate calibration in the presence of instrument drift using a near-infrared (NIR) spectrometer (7500-11 000 cm-1) to quantitate dilute aqueous solutions containing glucose, ethanol, and urea. The spectral variations required to update the multivariate models for both short- and long-term drift were obtained using a single representative midpoint sample whose spectrum was repeatedly measured during collection of calibration data and during collection of separate validation sample spectra on three subsequent days. The performance of the PACLS/PLS model for maintaining a calibration was compared to PLS with subset recalibration, a method that has previously been applied to maintenance and transfer of calibration. Without drift corrections, both PACLS/PLS and PLS had poor predictive ability on sample spectra collected on subsequent days. Unlike previous maintenance of calibration studies that corrected for long-term drift only, the PACLS/PLS and PLS models demonstrated the best predictive abilities when short-term drift was also corrected. The PACLS/PLS hybrid model outperformed PLS with subset recalibration for near real-time predictions when instrument drift was determined from the repeat samples closest in time to the measurement of the unknown. Near real-time standard errors of prediction (SEPs) for the hybrid model were comparable to the cross-validated SEPs obtained with the original calibration model.