ATTENTION: This site is down for maintenance in read-only mode.

The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.

Observation of the Berreman Effect in Infrared Reflection-Absorption Spectra of Amorphous Titanium Oxide Thin Films Deposited on Aluminum

Volume 54, Number 5 (May 2000) Page 687-691

Trasferetti, B.C.; Davanzo, C.U.; Cruz, N. C. Da; Moraes, M. A. B. De

Infrared reflection-absorption spectra of plasma-enhanced chemical vapor deposition (PECVD) amorphous TiO2 thin films on aluminum were obtained with s- and p-polarized light and oblique incidence angles. Such spectra were analyzed by means of spectral simulations based on a Fresnel equation for a three-layered system. The optical constants used in the simulations were obtained through the Kramers-Krönig analysis of the reflectance spectra of a pellet of powdered amorphous TiO2. LO-TO energy-loss functions were also calculated from these optical constants, and a splitting was observed. A good qualitative agreement between experimental and simulated spectra was achieved, and the Berreman effect was observed in both cases when p-polarized light was used. It was shown, therefore, that the Berreman effect makes infrared reflection-absorption spectroscopy a successful technique for the characterization of an amorphous TiO2 thin layer on aluminum.