The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.

Surface-Enhanced Infrared Spectroscopy: A Comparison of Metal Island Films with Discrete and Nondiscrete Surface Plasmons

Volume 54, Number 3 (March 2000) Page 371-377

Jensen, T.R.; Duyne, R. P. Van; Johnson, S.A.; Maroni, V.A.

A study of the surface-enhanced infrared absorption (SEIRA) spectroscopy of para-nitrobenzoic acid (PNBA) adsorbed on thermally evaporated silver films has been conducted to determine the effect of film architecture on the magnitude of the SEIRA enhancement. Ordered arrays of uniformly sized silver nanoparticles, termed periodic particle arrays (PPAs), were prepared on several different infrared transparent substrates (germanium, silicon, and mica) by nanosphere lithography (NSL). It was found that the ordered arrays deposited by NSL produced well-defined and intense surface plasmon resonance (SPR) bands in the infrared at frequencies between 1500 and 4000cm -1. The peak frequency of these infrared SPR bands depended on the array architecture and the substrate material. By appropriate design of the nanoparticle array, the infrared SPR band can be made to be coincident with the SEIRA sensitive infrared bands of the PNBA. The trends in the infrared SPR peak frequencies and band shapes were consistent with predictions from electrodynamic theory. The SEIRA responses per unit area of deposited metal obtained with the PPA-type films were at best comparable to results obtained with disordered silver and gold films deposited on the same substrate materials by thermal evaporation (i.e., in the absence of any NSL masking spheres). The results of this study are most consistent with theories and models that attribute SEIRA to the dielectric constant and optical extinction spectrum of the metal film. Index Headings: Infrared spectroscopy; Surface-enhanced infrared absorption; Plasmon; SEIRA.