The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.

Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy

Volume 54, Number 3 (March 2000) Page 413-419

Norgaard, L.; Saudland, A.; Wagner, J.; Nielsen, J.P.; Munck, L.; Engelsen, S.B.

A new graphically oriented local modeling procedure called interval partial least-squares (i PLS) is presented for use on spectral data. The i PLS method is compared to full-spectrum partial least-squares and the variable selection methods principal variables (PV), forward stepwise selection (FSS), and recursively weighted regression (RWR). The methods are tested on a near-infrared (NIR) spectral data set recorded on 60 beer samples correlated to original extract concentration. The error of the full-spectrum correlation model between NIR and original extract concentration was reduced by a factor of 4 with the use of i PLS (r=0.998, and root mean square error of prediction equal to 0.17% plato), and the graphic output contributed to the interpretation of the chemical system under observation. The other methods tested gave a comparable reduction in the prediction error but suffered from the interpretation advantage of the graphic interface. The intervals chosen by i PLS cover both the variables found by FSS and all possible combinations as well as the variables found by PV and RWR, and i PLS is still able to utilize the first-order advantage. Index Headings: Interval PLS; Variable selection; NIR, Principal variables; Forward stepwise selection; Recursively weighted regression; Beer; Extract.