The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.

Optical Fiber-Based Wave Mixing as a Convenient and Sensitive Laser Analytical Tool for Condensed-Phase Analytes

Volume 52, Number 5 (May 1998) Page 763-769

Nunes, Jon A.; Tong, William G.

A fiber-optic degenerate four-wave mixing (D4WM) probe for the measurement of small absorptions in liquid-phase samples is described. Laser D4WM is a nonlinear laser spectroscopic technique that has proven to be highly sensitive for the detection of trace analytes in condensed-phase media. A significant improvement in the forward-scattering optical arrangement of D4WM is demonstrated by using optical fibers for both laser light input and output. There is considerable flexibility inherent in the design since the system may be used in three configurations: (1) the simplest case of transmitting the signal radiation by optical fiber to the detection electronics, (2) the case of guiding the excitation beams to the analyte by polarization-maintaining optical fibers, and (3) the combination of both. The optical fiber-based D4WM system is shown to be an effective and sensitive laser analytical spectroscopic method for trace analysis, offering advantages such as detection in very small probe volumes, remote and in situ analysis, and convenient and efficient optical alignment enhancements obtained by the use of optical fibers.