ATTENTION: This site is down for maintenance in read-only mode.

The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.

Quantitative Analysis of Mixed Volatile Fluids by Raman Microprobe Spectroscopy: A Cautionary Note on Spectral Resolution and Peak Shape

Volume 47, Number 6 (June 1993) Page 816-820

Seitz, Jeffery C.; Pasteris, Jill D.; Morgan, George B.

Raman analyses of fluid inclusions can yield quantitative information on composition (from peak areas and heights) and density (from peak position and width). In this study, we examine the effect of instrumental spectral resolution on the ratios of these spectral parameters, and the selection of appropriate integration limits for the determination of peak areas in the CO2-CH4-N2 system. Spectral resolution was varied from about 1 to 9 cm−1 by co-varying the widths of all spectrometer slits. Changes in resolution produced a modest effect on peak-area ratios and a significant effect on peak-height ratios. Measured peak-width ratios varied strongly as a function of the spectral resolution. In addition, we observed a moderate shift in the measured peak position of N2, which can be related to the asymmetry of the band. These results indicate that accurate analysis requires careful attention to the selection of quantification factors, especially if the selected values were derived from studies at different spectral resolutions. Another factor that can have a significant effect on the calculated compositions of CH4- and H2-bearing fluid mixtures is the band broadening that occurs with increasing pressure.