The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.

Influence of Instrumental Parameters on the Kinetic Energy of Ions and Plasma Temperature for a Hexapole Collision/Reaction-Cell-Based Inductively Coupled Plasma Quadrupole Mass Spectrometer

Volume 63, Number 2 (Feb. 2009) Page 207-213

Favre, Georges; Brennetot, René; Chartier, Frédéric; Tortajada, Jeanine

Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in inorganic analytical chemistry for element and/or isotope ratio measurements. The presence of interferences, which is one of the main limitations of this method, has been addressed in recent years with the introduction of collision/reaction cell devices on ICP-MS apparatus. The study of ion-molecule reactions in the gas phase then became of great importance for the development of new analytical strategies. Knowing the kinetic energy and the electronic states of the ions prior to their entrance into the cell, i.e., just before they react, thereby constitutes crucial information for the interpretation of the observed reactivities. Such studies on an ICP-MS commonly used for routine analyses require the determination of the influence of different instrumental parameters on the energy of the ions and on the plasma temperature from where ions are sampled. The kinetic energy of ions prior to their entrance into the cell has been connected to the voltage applied to the hexapole according to a linear relationship determined from measurements of ion energy losses due to collisions with neutral gas molecules. The effects of the plasma forward power, sampling depth, and the addition of a torch shield to the ICP source were then examined. A decrease of the plasma potential due to the torch shielding, already mentioned in the literature, has been quantified in this study at about 3 V.