holder

ATTENTION: This site is down for maintenance in read-only mode.

The following is an abstract for the selected article. A PDF download of the full text of this article is available here. Members may download full texts at no charge. Non-members may be charged a small fee for certain articles.


Quantitative Determination of the Scattering and Absorption Coefficients from Diffuse Reflectance and Transmittance Measurements: Application to Pharmaceutical Powders

Volume 51, Number 3 (March 1997) Page 309-317

Burger, T.; Kuhn, J.; Caps, R.; Fricke, J.


A measurement and data evaluation technique for the separate determination of the scattering and absorption properties of loose pharmaceutical powders is described. The equation of radiative transfer for diffuse reflectance and transmittance is analytically solved by using a three-flux approximation. Combined transmittance and reflectance measurements then allow one to derive both the scattering and the absorption coefficients. The scattering and absorption coefficients provide more information about particle size, degree of agglomeration, and chemical composition of the samples in comparison to the usual determination of only the ratio of the coefficients from diffuse reflectance measurements on optically thick samples. Furthermore, the theory of diffuse reflectance of optically thick samples according to Kubelka and Munk is compared to the three-flux approximation. The influence of the particle size on the scattering and absorption coefficient is investigated, and it is shown that the assumption of a wavelength-independent scattering coefficient, though often made in reflectance spectroscopy, is not generally valid.